
 1

DØ Note XXXX

v0.2

Valid Data Groups

Adam Lyon

24 July 2004

ABSTRACT: This document describes the utility of Valid Data Groups (VDGs), a
new addition to the SAM Schema currently in production. The VDG schema is
explained and then several use cases are given. VDGs offer a general solution to the
“processing problem” that is being currently discussed. This solution for the specific
use case of merging is given and then generalized to other processing activities.

1 Introduction
Valid Data Groups are a new concept to the SAM meta-data catalog that allow
one to group files together by assigning them to one or more lists. Each list is a
valid data group (hereafter abbreviated VDG). A VDG is identified by a name, a
type, and an application family. VDGs have applications for a wide variety of
use cases and may be important for some problems facing SAM today.

2 Valid Data Group Schema
An almost complete picture of the VDG schema is shown below. This schema is
already in the production Oracle Database.

The import table is DATAFILES_VALID_DATA_GROUP. This table specifies
what VDG a file belongs to (and a file can be in more than one row and so belong
to more than one group). The other fields specify the VDG by connections to the
VDG name, the VDG type and the application family. The

Deleted: 2

 2

VALID_DATA_GROUP table merely enforces a list of known VDGs to avoid
mistakes. In the DATA_GROUP and DATA_GROUP_TYPE tables, descriptions
(not shown) are paired with their IDs.

3 Initial Motivation
VDGs were introduced by Wyatt after an ugly reco reprocessing effort at DØ.
Some files that had been processed by reco were known to be bad and needed to
be reprocessed. The problem was that the version of the reco application for this
reprocessing did not change. Therefore, it was difficult to distinguish the old bad
files from the new good files. Furthermore, the old bad files were only bad in one
small aspect and were still useable by many groups. And in fact many people
wanted to be able to process these files during the reprocessing – that is analyze
the new good files that had come out of the reprocessing along with the old files
that had not yet been reprocessed.

A mechanism was needed to separate the old files from the new files so that
datasets could be created on each. What was decided was to change the
conventions of the reco application version. The old files had reco application
version of “p13.01” [not sure if the numerals are right, but that’s irrelevant] while
the new files had reco application version of “r13.01”.

This mechanism of introducing a new fake version number was extremely
unsatisfying as it broke the reco version convention. Users would have to
explicitly remember this “r13.01” version and use it in their dataset definitions. If
a user forgot this version, they would miss analyzing a significant amount of the
data (though now all of this data has been reprocessed again and the special
version identifier is no longer needed).

The fact that an easy and elegant solution to this problem could not be found
revealed a deficiency in the SAM meta-data DB schema and lead to the invention
of VDGs.

3.1 How Valid Data Groups would have solved the problem
The problem here is that there were files that were different, but shared the same
standard meta-data. The introduction of the fake application version solved this
problem by forcing the meta-data to be different, but in a very unnatural way.
VDGs aim to solve the problem by assigning files to lists. One could imagine a
list, or VDG, of the old, not yet processed files and a list of the new reprocessed
files. When an old file is reprocessed and the new file is stored in SAM, its entry
in the “old” list is removed, and an entry for the new file is added to the “new”
list.

 3

Users wanting to analyze the union of old, not yet processed files and the new
reprocessed files would create a data set that simply combined the two VDGs. If
the VDGs were maintained automatically, then the user would automatically get
the right files. All the user would have to remember is the names of those VDGs,
instead of obscure version numbers.

Once the reprocessing was complete, the old files could be marked with bad
content status. The new fixed files would be available using the standard
application versions. The VDGs would no longer be needed and could be
removed from the database.

4 An alternative to VDGs – file tags
An alternative to VDGs is to tag the files themselves with new meta-data. That is
create a new file attribute that contains one or more tags (or bit flags – the
mechanism is immaterial). To solve the problem above, could imagine this
attribute would be a flag that was “processed” or “unprocessed”. All of the old
files would be marked as unprocessed at the start of the reprocessing. As a file
was reprocessed and the new file put in SAM, the tag on the old file would be
changed from “unprocessed” to “processed”. Then some new tag would have to
be invented for the new file, like “reprocessed”.

Users would then select the unprocessed tag (along with data-tier, application
family, etc.) to get the not-yet-processed old files and then the “reprocessed” tag
to get the new files.

4.1 Comparison to Valid Data Groups
There are some clear disadvantages to the file tags idea:

• Scalability: File tags do not scale. If one needs to keep track of multiple
operations (e.g. merging, skimming for group A, skimming for group B),
then each would need one or more tags. One could leave room in the
schema for a sensible number of tags, but that seems artificial and no
doubt we will exceed it one day. VDGs, on the other hand, scale easily.
One just creates the new set of lists for each purpose. The number of lists
is only limited by how much stuff the DB can hold.

• Connection to Application version and Types: The file tags would
presumably be just a name or a status word attached to the file. VDGs, on
the other hand, have a richer identification mechanism. One could set up
VDGs with the same name but associated with different types and
different application families. This could allow things like testing an
operation using a “test” VDG type. Or skimming with a different
application. The VDG names could hold to some standard (like “WZ

Deleted: need to be kept track up

Deleted: Once

 4

skimming”) while the purpose of the VDGs could be further refined by
the type and application family connection. File tags would have to be
renamed for each of these purposes, leading to long and ugly names.

• Ease of use: For file tags, a query to get files of a certain tag would also
involve the other meta-data to identify the file (data-tier, application
family, perhaps file name? etc.). For VDGs, one would only need to
specify the VDG (presumably by name and if necessary, application
family and type). The VDG gloms the meta-data into a list that can be
obtained easily.

5 Some use cases
Below are some use cases for Valid Data Groups

5.1 Gabriele’s “Bookkeeping of files for merging” use cases
These use cases come from Gabriele’s mail at
http://listserv.fnal.gov/scripts/wa.exe?A2=ind0407&L=sam-
design&F=&S=&P=3904

5.1.1 Monte Carlo production on Sam Grid
Monte Carlo Event production yields a set of files that are temporally stored (the
“unmerged set”). These files are then merged into a smaller set of larger sized
files. Problems:

• The merged files and the unmerged files contain the same data, therefore
their meta-data are identical. Using data-tier to separate the files is an
overloading of the data-tier principle and is undesirable. The sets of files
only differ in how events are distributed within them – the events
themselves are the same.

• One needs to keep track of what unmerged files have already been
processed. The current proposal is to check if the unmerged files have
children, and if so then assume they have been processed. This works if
one can guarantee that no one will run over the unmerged files before the
merge is made. One could argue that the unmerged files are private and
no one except for the merger would have access to them, but this
restriction may not be acceptable. One could imagine instances where
groups would want to immediately skim large general MC samples before
or while the merging was taking place. In that case, relying on the
existence of children will not work because the unmerged files may have
children due to the other processes.

• One also needs to know that once a file has been merged, it can be marked
for disposal.

Deleted: A

Deleted: , and in fact the same
events

Deleted: . T

Deleted: nearly

 5

• If something bad happens to the merging process, it should be restarted
easily. Therefore one has to know what files have been already merged.

Valid data groups provide an elegant and scalable method to handle this use
case. For maximum flexibility, one would need three VDGs for the operation
(one could get away with as little as one VDG).

• VDG A contains the list of unmerged files yet to be processed
• VDG B contains the list of unmerged files that have been processed
• VDG C contains the list of merged files produced

(Note that I have purposefully not indicated how these VDGs should be named,
see section 6).

When a merged file is stored into SAM, the following would happen:

• The merged file is added into VDG C
• The unmerged files used to produce the merged files are removed from

VDG A and added to VDG B
Note that one does this above operation only when a merged file is created. One
could imagine moving each unmerged file from VDG A to VDG B as it is
processed. But if the merger crashes the incomplete merged file is in an unknown
state and must be thrown away. Following the operation above makes
reproducing that merged file and continuing the merging process very easy.

This mechanism of using VDGs solves all of the problems.

• The merged and unmerged files are easily separated by querying the
different VDGs.

• The files that need to be merged are always in VDG A. If the merger is
stopped and needs to be restarted, one still simply uses VDG A.

• Users that want to analyze the union of merged files and remaining
unmerged files would create a dataset with the union of VDG A and VDG
C. The resulting list of files will always be consistent.

• Once the merge is complete, VDG B would be used to easily determine
what files could be discarded. The merged files in VDG C already have
the right standard meta-data and would take their rightful place among
the experiment’s files without any further operation. To save space, the
VDGs themselves could then be discarded.

5.1.2 CDF wants to analyze files while they are being merged
This is covered in section 5.1.1 and see section 5.2.1.

Deleted: would

Deleted: disposed

Deleted: .

 6

5.1.3 Marking files that participated to a process as “processed”
This is covered in section 5.1.1. As mentioned there, producing a rescue dataset is
simple.

5.1.4 Consistency
To quote Gabriele, “We would like to find a mechanism to bookkeep the status of
these files similar to what sam does already e.g. for skimmed files.” Not sure
what is meant here. How does SAM do bookkeeping for skimmed files? Aside
from the “consumed” status, it doesn’t do anything special . But see section 5.2.1.

5.1.5 Users don’t need retraining
This is a tricky issue and is one where VDGs do not help. In order to access
things correctly during a merging process, the users will need to know the right
VDG(s). After the merging is done, then one assumes the users would be able to
go back to the standard meta-data as the unmerged files are discarded.

The proposal for handling this use case with file tags involves putting new
defaults into the dataset definition maker to make the queries somewhat
transparent. But what must be realized is that this task of analyzing files while
their creation process is ongoing is a special task. It is not unreasonable to expect
that some special effort would be required by those too impatient to wait for the
creation process to complete. Furthermore, querying on VDGs is easy – all that is
needed are the identifiers (name, perhaps type, and perhaps application family).

5.2 Extensions to Gabriele’s use cases

5.2.1 Merging and skimming MC files simultaneously
Say a large, fairly general MC sample is being produced (say a generic BB-bar
sample). The MC sample is so large that it needs to be skimmed to make further
analysis easy (skimming means writing out events that pass certain criteria).
Perhaps several skims will be made, each with different criteria. The original MC
sample could be thrown away, but it is decided that since producing it was very
painful, its files should be merged and stored in case additional skimming needs
to be done. The requirement is that this merging be performed simultaneously
with the skimming operations in order to save time.

• How does one keep track of what has been skimmed (for each skim)?
• How does one keep track of what has been merged?

Again, the easy solution is to create three VDGs for each operation. As discussed
in section 5.1.1, this setup allows one to easily track what is being produced,

Deleted: .

 7

what has been processed and what is remaining to be processed. See section 6 for
more information.

6 A general solution to the processing problem with
Valid Data Groups

The problems discussed in section 5 are all similar:
• There is a group of files that need to be processed.
• One wants to keep track of while files from that group have been

processed and what files from that group have not yet been processed.
• One wants to keep track of the new files that are produced.
• The standard meta-data are not enough to easily distinguish the new files

from the old files.

The general solution is to create three VDGs. The VDGs would all have the same
name (perhaps the request ID or the name of the skimming process) and
application family. The VDGs would differ by their type.

• VDG of type “to-be-processed” holds the list of unprocessed files
• VDG of type “processed” holds the list of unprocessed files that are now

processed
• VDG of type “final” holds the list of new files that were produced

With these VDGs, one can easily:

• Determine what has and has not been processed (VDG of type “to-be-
processed”)

• Create datasets combining the unprocessed and the final files (the “to-be-
processed” VDG + the “final” VDG)

• Create rescue datasets (VDG of type “to-be-processed”)
• Determine what files are disposable (VDG of type “processed”)

If multiple operations are occurring for a set of files (skimming and merging)
then each operation would have its set of three VDGs. They would differ by the
VDG name (which would identify the process [e.g. “merge request 11223”, “skim
A request 11223”, “skim B request 11223”]). Then all processes could be tracked
independently and easily.

7 Other Use Cases
I can think of more use cases than I have time to write! More to come…

8 Required tools
The schema for VDGs is already in production. What is required and crucial for
the success of VDGs are tools that make managing VDGs as simple,

 8

straightforward and automated as possible. The dataset definition creator will
also need updating to allow obtaining files in particular VDGs.

These tools will be needed:

• Creating a new VDG
• Adding a file or a set of files to a VDG (initiated by a sam store and/or by

hand)
• Removing a file or set of files from a VDG (initiated by a sam store

and/or by hand [e.g. remove parents])
• Create datasets giving a VDG identifier.
• More…?

